Mathematical Physics
PHYS 565
Fall 2016 not offered
|
Historically, physics and mathematics are closely related. Physics uses powerful tools developed by mathematicians, while physicists, investigating the actually existing universe, provide mathematicians with new concepts and ideas to explore. This way, many mathematical techniques, and even entire areas of mathematics, developed from the need to solve certain real-life problems posed by physical reality. The purpose of this course is to give you an overview of the powerful array of mathematical tools available for the solution of physical problems. Starting with special functions, we will apply them to the solution of ordinary and partial differential equations. We will encounter Fourier and Laplace transforms and will study the Green's function method for the solution of bound and scattering problems. We will also look into the elements of Group theory and apply it to angular momentum in quantum many-body systems. |
Credit: 1 |
Gen Ed Area Dept:
None |
Course Format: Lecture | Grading Mode: Graded |
Level: GRAD |
Prerequisites: MATH222 AND MATH223 AND PHYS313 AND PHYS315 AND PHYS324 |
|
Fulfills a Requirement for: (IDEA-MN) |
Major Readings:
H. W. Wyld, MATHEMATICAL METHODS FOR PHYSICS, Westview Press; 2nd edition (March 31, 1999) ISBN-10: 0738201251 ISBN-13: 978-078201252
|
Examinations and Assignments: TBA |
Additional Requirements and/or Comments: Exceptionally well-prepared undergraduates may register with permission of instructor. |
Drop/Add Enrollment Requests | | | | | |
Total Submitted Requests: 0 | 1st Ranked: 0 | 2nd Ranked: 0 | 3rd Ranked: 0 | 4th Ranked: 0 | Unranked: 0 |
|
|