Longitudinal Data Analysis
QAC 311
Spring 2019
| Section:
01
|
Certificates: Applied Data Science |
Course Cluster: Data Analysis Minor |
Work across different fields, from medicine and public health to social sciences and education, often involves the collection and analysis of longitudinal data--combination of cross-sectional and time series (repeated measures for the unit of observation) data. This rich data structure provides opportunities to explore questions that could not be addressed with simpler data sets, but at the same time requires special considerations because we are analyzing observations that are not independent. The course introduces students to appropriate graphical exploration of the data and the specification and estimation of fixed and random-effects models. It also develops the basic framework for difference-in-differences models and explores their applications. |
Credit: .5 |
Gen Ed Area Dept:
NSM QAC, SBS QAC |
Course Format: Laboratory Course | Grading Mode: Graded |
Level: UGRD |
Prerequisites: [QAC201 or GOVT201 or PSYC280 or NS&B280] OR QAC380 OR ECON300 OR [GOVT367 or QAC302] OR PSYC200 |
|
Fulfills a Requirement for: (CADS)(DATA-MN)(PSYC) |
|
Past Enrollment Probability: 75% - 89% |
SECTION 01 - 4th Quarter | Special Attributes: CQC |
Major Readings: Wesleyan RJ Julia Bookstore
No required textbook. Journal articles and online material Some references from: Fitzmaurice, Garrett M., Laird, Nan M., and Ware, James H, APPLIED LONGITUDINAL ANALYSIS, Wiley, 2011 Taris, Toon, A PRIMER IN LONGITUDINAL DATA ANALYSIS, SAGE Publications, 2000 (available in online format through Wesleyan Library) Weiss, Robert E., MODELING LONGITUDINAL DATA, Springer-Verlag, 2005.
|
Examinations and Assignments: Several homework assignments and a take-home final exam linked to the course project. Part of the grade will depend on class preparation and participation. |
Additional Requirements and/or Comments: An introductory statistics/data analysis background is a prerequisite for the course and that is why QAC201, or 380, or ECON 300 or GOVT367, or PSYC 200 etc. are listed as formal prerequisites. Pre-req overrides will be approved by the Professor for students who satisfy this basic requirements through other course work. The course includes a strong lab component and programming with a statistical analysis software (e.g. SAS, or Stata, or R) is a significant part of the course work.
Please Note: The course meets the second half of the semester while QAC 314 meets during the first half of the term. |
Instructor(s): Kaparakis,Emmanuel I. Times: .M.W... 01:20PM-02:40PM; Location: ALLB204; |
Total Enrollment Limit: 16 | | SR major: 0 | JR major: 0 |   |   |
Seats Available: -5 | GRAD: 1 | SR non-major: 6 | JR non-major: 6 | SO: 3 | FR: 0 |
Drop/Add Enrollment Requests | | | | | |
Total Submitted Requests: 0 | 1st Ranked: 0 | 2nd Ranked: 0 | 3rd Ranked: 0 | 4th Ranked: 0 | Unranked: 0 |
|
|